Getting Started
Loading a Context
There are several ways to load a context with this package, including:
pre-defined contexts
contexts encoded in the standard prefix map format
contexts encoded in the standard JSON-LD context format
contexts encoded in the extended prefix map format
Loading a pre-defined context
There exist many registries of semantic spaces that include CURIE prefixes, URI prefixes, sometimes synonyms, and other associated metadata. The Bioregistry provides a detailed overview of the registries available. This package exposes a few high quality registries that are internally consistent (i.e., are bijective).
Name |
Function |
---|---|
Bioregistry |
|
OBO Foundry |
|
Prefix Commons |
|
Monarch |
|
Gene Ontology |
These functions can be called directly to instantiate the curies.Converter
class, which is used for compression, expansion, standardization, and other operations
below.
import curies
# Uses the Bioregistry, an integrative, comprehensive registry
bioregistry_converter = curies.get_bioregistry_converter()
# Uses the OBO Foundry, a registry of ontologies
obo_converter = curies.get_obo_converter()
# Uses the Monarch Initiative project-specific context
monarch_converter = curies.get_monarch_converter()
Loading Prefix Maps
A prefix map is a dictionary whose keys are CURIE prefixes and values are URI prefixes. An abridged example using OBO Foundry preferred CURIE prefixes and URI prefixes is
{
"CHEBI": "http://purl.obolibrary.org/obo/CHEBI_",
"MONDO": "http://purl.obolibrary.org/obo/MONDO_",
"GO": "http://purl.obolibrary.org/obo/GO_"
}
Prefix maps can be loaded using the curies.load_prefix_map()
. First,
a prefix map can be loaded directly from a Python data structure like in
import curies
prefix_map = {
"CHEBI": "http://purl.obolibrary.org/obo/CHEBI_"
}
converter = curies.load_prefix_map(data)
This function also accepts a string with a HTTP, HTTPS, or FTP path to a remote file as well as a local file path.
Warning
Ideally, prefix maps are bijective, meaning that both the keys and values are unique.
The Python dictionary data structure ensures that keys are unique, but sometimes values are repeated. For example,
the CURIE prefixes DC
and DCTERMS
are often used interchangeably with the URI prefix for
the Dublin Core Metadata Initiative Terms.
Therefore, many prefix maps are not bijective like
{
"DC": "http://purl.org/dc/terms/",
"DCTERMS": "http://purl.org/dc/terms/"
}
If you load a prefix map that is not bijective, it can have unintended consequences. Therefore,
an error is thrown. You can pass strict=False
if you don’t mind having unsafe data. A better data
structure for situations when there can be CURIE synonyms or even URI prefix synonyms is
the extended prefix map (see below).
If you’re not in a position where you can fix data issues upstream, you can try using the
curies.upgrade_prefix_map()
to extract a canonical extended prefix map from a non-bijective
prefix map.
Loading Extended Prefix Maps
Extended prefix maps (EPMs) address the issues with prefix maps by including explicit fields for CURIE prefix synonyms and URI prefix synonyms while maintaining an explicit field for the preferred CURIE prefix and URI prefix. An abbreviated example (just containing an entry for ChEBI) looks like:
[
{
"prefix": "CHEBI",
"uri_prefix": "http://purl.obolibrary.org/obo/CHEBI_",
"prefix_synonyms": ["chebi"],
"uri_prefix_synonyms": [
"https://identifiers.org/chebi:"
]
}
]
Extended prefix maps can be loaded with curies.load_extended_prefix_map()
. First,
a prefix map can be loaded directly from a Python data structure like in
import curies
epm = [
{
"prefix": "CHEBI",
"uri_prefix": "http://purl.obolibrary.org/obo/CHEBI_",
"prefix_synonyms": ["chebi"],
"uri_prefix_synonyms": [
"https://identifiers.org/chebi:"
]
}
]
converter = curies.load_extended_prefix_map(data)
An extended prefix map can be loaded from a remote file via HTTP, HTTPS, or FTP with
import curies
url = "https://raw.githubusercontent.com/mapping-commons/sssom-py/master/src/sssom/obo.epm.json"
converter = curies.load_extended_prefix_map(url)
Similarly, an extended prefix map stored in a local file can be loaded with the following.
This works with both pathlib.Path
and vanilla strings.
from pathlib import Path
from urllib.request import urlretrieve
import curies
url = "https://raw.githubusercontent.com/mapping-commons/sssom-py/master/src/sssom/obo.epm.json"
path = Path.home().joinpath("Downloads", "obo.epm.json")
urlretrieve(url, path)
converter = curies.load_extended_prefix_map(path)
Loading JSON-LD Contexts
A JSON-LD context
allows for embedding of a simple prefix map within a linked data document.
They can be identified hiding in all sorts of JSON (or JSON-like) content
with the key @context
. JSON-LD contexts can be loaded using curies.Converter.from_jsonld()
.
First, a JSON-LD context can be loaded directly from a Python data structure like in
import curies
data = {
"@context": {
"CHEBI": "http://purl.obolibrary.org/obo/CHEBI_"
}
}
converter = curies.load_jsonld_context(data)
Note
This correctly handles the more complex data structures including @prefix
noted in
here.
A JSON-LD context can be loaded from a remote file via HTTP, HTTPS, or FTP with
import curies
url = "https://raw.githubusercontent.com/biopragmatics/bioregistry/main/exports/contexts/semweb.context.jsonld"
converter = curies.load_jsonld_context(url)
A JSON-LD context stored in a local file can be loaded with the following.
This works with both pathlib.Path
and vanilla strings.
from pathlib import Path
from urllib.request import urlretrieve
import curies
url = "https://raw.githubusercontent.com/biopragmatics/bioregistry/main/exports/contexts/semweb.context.jsonld"
path = Path.home().joinpath("Downloads", "semweb.context.jsonld")
urlretrieve(url, path)
converter = curies.load_jsonld_context(path)
Loading SHACL
The shapes constraint language (SHACL) can be used to represent prefix maps directly in RDF using the sh:prefix and sh:namespace predicates. Therefore, the simple ChEBI example from before can be represented using
@prefix sh: <http://www.w3.org/ns/shacl#> .
[
sh:declare
[
sh:prefix "CHEBI" ;
sh:namespace "http://purl.obolibrary.org/obo/CHEBI_" .
] .
]
A SHACL context can be loaded from a remote file via HTTP, HTTPS, or FTP with
import curies
url = "https://raw.githubusercontent.com/biopragmatics/bioregistry/main/exports/contexts/semweb.context.ttl"
converter = curies.load_shacl(url)
A SHACL context stored in a local file can be loaded with the following.
This works with both pathlib.Path
and vanilla strings.
from pathlib import Path
from urllib.request import urlretrieve
import curies
url = "https://raw.githubusercontent.com/biopragmatics/bioregistry/main/exports/contexts/semweb.context.ttl"
path = Path.home().joinpath("Downloads", "semweb.context.ttl")
urlretrieve(url, path)
converter = curies.load_shacl(path)
Introspecting on a Context
After loading a context, it’s possible to get certain information out of the converter. For example, if you want to
get all of the CURIE prefixes from the converter, you can use Converter.get_prefixes()
:
import curies
converter = curies.get_bioregistry_converter()
prefixes = converter.get_prefixes()
assert 'chebi' in prefixes
assert 'CHEBIID' not in prefixes, "No synonyms are included by default"
prefixes = converter.get_prefixes(include_synonyms=True)
assert 'chebi' in prefixes
assert 'CHEBIID' in prefixes
Similarly, the URI prefixes can be extracted with Converter.get_uri_prefixes()
like in:
import curies
converter = curies.get_bioregistry_converter()
uri_prefixes = converter.get_uri_prefixes()
assert 'http://purl.obolibrary.org/obo/CHEBI_'' in prefixes
assert 'https://bioregistry.io/chebi:' not in prefixes, "No synonyms are included by default"
uri_prefixes = converter.get_uri_prefixes(include_synonyms=True)
assert 'http://purl.obolibrary.org/obo/CHEBI_'' in prefixes
assert 'https://bioregistry.io/chebi:' in prefixes
It’s also possible to get a bijective prefix map, i.e., a dictionary from primary CURIE prefixes
to primary URI prefixes. This is useful for compatibility with legacy systems which assume simple prefix maps.
This can be done with the bimap
property like in the following:
import curies
converter = curies.get_bioregistry_converter()
prefix_map = converter.bimap
>>> prefix_map['chebi']
'http://purl.obolibrary.org/obo/CHEBI_'
Modifying a Context
Incremental Converters
As suggested in #13, new data
can be added to an existing converter with either
curies.Converter.add_prefix()
or curies.Converter.add_record()
.
For example, a CURIE and URI prefix for HGNC can be added to the OBO Foundry
converter with the following:
import curies
converter = curies.get_obo_converter()
converter.add_prefix("hgnc", "https://bioregistry.io/hgnc:")
Similarly, an empty converter can be instantiated using an empty list for the records argument and prefixes can be added one at a time (note this currently does not allow for adding synonyms separately):
import curies
converter = curies.Converter(records=[])
converter.add_prefix("hgnc", "https://bioregistry.io/hgnc:")
A more flexible version of this operation first involves constructing
a curies.Record
object:
import curies
converter = curies.get_obo_converter()
record = curies.Record(prefix="hgnc", uri_prefix="https://bioregistry.io/hgnc:")
converter.add_record(record)
By default, both of these operations will fail if the new content conflicts with existing content.
If desired, the merge
argument can be set to true to enable merging. Further, checking
for conflicts and merging can be made to be case insensitive by setting case_sensitive
to false.
Such a merging strategy is the basis for wholesale merging of converters, described below.
Chaining and Merging
This package implements a faultless chain operation curies.chain()
that is configurable for case
sensitivity and fully considers all synonyms.
curies.chain()
prioritizes based on the order given. Therefore, if two prefix maps
having the same prefix but different URI prefixes are given, the first is retained. The second
is retained as a synonym
import curies
c1 = curies.load_prefix_map({"GO": "http://purl.obolibrary.org/obo/GO_"})
c2 = curies.load_prefix_map({"GO": "https://identifiers.org/go:"})
converter = curies.chain([c1, c2])
>>> converter.expand("GO:1234567")
'http://purl.obolibrary.org/obo/GO_1234567'
>>> converter.compress("http://purl.obolibrary.org/obo/GO_1234567")
'GO:1234567'
>>> converter.compress("https://identifiers.org/go:1234567")
'GO:1234567'
Chain is the perfect tool if you want to override parts of an existing extended prefix map. For example, if you want to use most of the Bioregistry, but you would like to specify a custom URI prefix (e.g., using Identifiers.org), you can do the following
import curies
overrides = curies.load_prefix_map({"pubmed": "https://identifiers.org/pubmed:"})
bioregistry_converter = curies.get_bioregistry_converter()
converter = curies.chain([overrides, bioregistry_converter])
>>> converter.expand("pubmed:1234")
'https://identifiers.org/pubmed:1234'
Subsetting
A subset of a converter can be extracted using curies.Converter.get_subconverter()
.
This functionality is useful for downstream applications like the following:
You load a comprehensive extended prefix map, e.g., from the Bioregistry using
curies.get_bioregistry_converter()
.You load some data that conforms to this prefix map by convention. This is often the case for semantic mappings stored in the SSSOM format.
You extract the list of prefixes actually used within your data
You subset the detailed extended prefix map to only include prefixes relevant for your data
You make some kind of output of the subsetted extended prefix map to go with your data. Effectively, this is a way of reconciling data. This is especially effective when using the Bioregistry or other comprehensive extended prefix maps.
Here’s a concrete example of doing this (which also includes a bit of data science) to do this on the SSSOM mappings from the Disease Ontology project.
>>> import curies
>>> import pandas as pd
>>> import itertools as itt
>>> commit = "faca4fc335f9a61902b9c47a1facd52a0d3d2f8b"
>>> url = f"https://raw.githubusercontent.com/mapping-commons/disease-mappings/{commit}/mappings/doid.sssom.tsv"
>>> df = pd.read_csv(url, sep="\t", comment='#')
>>> prefixes = {
... curies.Reference.from_curie(curie).prefix
... for column in ["subject_id", "predicate_id", "object_id"]
... for curie in df[column]
... }
>>> converter = curies.get_bioregistry_converter()
>>> slim_converter = converter.get_subconverter(prefixes)
Writing a Context
After loading and modifying a context, there are several functions for writing a context to a file:
Here’s a self-contained example on how this works:
import curies
converter = curies.load_prefix_map({
"CHEBI": "http://purl.obolibrary.org/obo/CHEBI_",
})
curies.write_shacl(converter, "example_shacl.ttl")
which outputs the following file:
@prefix sh: <http://www.w3.org/ns/shacl#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
[
sh:declare
[ sh:prefix "CHEBI" ; sh:namespace "http://purl.obolibrary.org/obo/CHEBI_"^^xsd:anyURI ]
] .
Faultless handling of overlapping URI prefixes
Most implementations of URI parsing iterate through the CURIE prefix/URI prefix pairs
in a prefix map, check if the given URI starts with the URI prefix, then returns the
CURIE prefix if does. This becomes an issue when a given URI can match multiple
overlapping URI prefixes in the prefix map. For example, the ChEBI URI prefix is
http://purl.obolibrary.org/obo/CHEBI_
and the more generic OBO URI prefix
is http://purl.obolibrary.org/obo/
. Therefore, it is possible that a URI could be
compressed two different ways, depending on the order of iteration.
curies
addresses this by using the trie
data structure, which indexes potentially overlapping strings and allows for efficient
lookup of the longest matching string (e.g., the URI prefix) in the tree to a given target string
(e.g., the URI).
This has two benefits. First, it is correct. Second, searching the trie data structure can be done in sublinear time while iterating over a prefix map can only be done in linear time. When processing a lot of data, this makes a meaningful difference!
The following code demonstrates that the scenario above. It will always return the correct
CURIE CHEBI:1
instead of the incorrect CURIE OBO:CHEBI_1
, regardless of the order of
the dictionary, iteration, or any other factors.
import curies
converter = curies.load_prefix_map({
"CHEBI": "http://purl.obolibrary.org/obo/CHEBI_",
"OBO": "http://purl.obolibrary.org/obo/
})
>>> converter.compress("http://purl.obolibrary.org/obo/CHEBI_1")
'CHEBI:1'
Standardization
The curies.Converter
data structure supports prefix and URI prefix synonyms.
The following example demonstrates
using these synonyms to support standardizing prefixes, CURIEs, and URIs. Note below,
the colloquial prefix gomf, sometimes used to represent the subspace in the
Gene Ontology (GO) corresponding to molecular
functions, is upgraded to the preferred prefix, GO
.
from curies import Converter, Record
converter = Converter([
Record(
prefix="GO",
prefix_synonyms=["gomf", "gocc", "gobp", "go", ...],
uri_prefix="http://purl.obolibrary.org/obo/GO_",
uri_prefix_synonyms=[
"http://amigo.geneontology.org/amigo/term/GO:",
"https://identifiers.org/GO:",
...
],
),
# And so on
...
])
>>> converter.standardize_prefix("gomf")
'GO'
>>> converter.standardize_curie('gomf:0032571')
'GO:0032571'
>>> converter.standardize_uri('http://amigo.geneontology.org/amigo/term/GO:0032571')
'http://purl.obolibrary.org/obo/GO_0032571'
Note: non-standard URIs (i.e., ones based on URI prefix synonyms) can still be parsed with
curies.Converter.parse_uri()
and compressed
into CURIEs with curies.Converter.compress()
.
Bulk Operations
Expansion, compression, and standardization operations can be done in bulk to all rows
in a pandas.DataFrame
using the following examples.
Bulk Compress URIs
In order to demonstrate bulk operations using curies.Converter.pd_compress()
,
we construct a small dataframe:
import curies
import pandas as pd
df = pd.DataFrame({"uri": [
"http://purl.obolibrary.org/obo/GO_0000010",
"http://purl.obolibrary.org/obo/GO_0000011",
"http://gudt.org/schema/gudt/baseCGSUnitDimensions",
"http://qudt.org/schema/qudt/conversionMultiplier",
]})
converter = curies.get_obo_converter()
converter.pd_compress(df, column="uri", target_column="curie")
Results will look like:
uri |
curie |
---|---|
Note that some URIs are not handled by the extended prefix map inside the converter, so if you want
to pass those through, use passthrough=True
like in
converter.pd_compress(df, column="uri", target_column="curie", passthrough=True)
uri |
curie |
---|---|
The keyword ambiguous=True
can be passed if the source column can either be a CURIE
or URI. Then, the semantics of compression are used from curies.Converter.compress_or_standardize()
.
Bulk Expand CURIEs
In order to demonstrate bulk operations using curies.Converter.pd_expand()
,
we construct a small dataframe used in conjunction with the OBO converter (which
only includes OBO Foundry ontology URI prefix expansions):
import curies
import pandas as pd
df = pd.DataFrame({"curie": [
"GO:0000001",
"skos:exactMatch",
]})
converter = curies.get_obo_converter()
converter.pd_expand(df, column="curie", target_column="uri")
curie |
uri |
---|---|
skos:exactMatch |
Note that since skos
is not in the OBO Foundry extended prefix map, no results are placed in
the uri
column. If you wan to pass through elements that can’t be expanded, you can use
passthrough=True
like in:
converter.pd_expand(df, column="curie", target_column="uri", passthrough=True)
curie |
uri |
---|---|
skos:exactMatch |
skos:exactMatch |
Alternatively, chaining together multiple converters (such as the Bioregistry) will yield better results
import curies
import pandas as pd
df = pd.DataFrame({"curie": [
"GO:0000001",
"skos:exactMatch",
]})
converter = curies.chain([
curies.get_obo_converter(),
curies.get_bioregistry_converter(),
])
converter.pd_expand(df, column="curie", target_column="uri")
curie |
uri |
---|---|
skos:exactMatch |
The keyword ambiguous=True
can be passed if the source column can either be a CURIE
or URI. Then, the semantics of compression are used from curies.Converter.compress_or_standardize()
.
Bulk Standardizing Prefixes
The Gene Ontology (GO) Annotations Database
distributes its file where references to proteins from the Universal Protein Resource (UniProt) use the prefix UniProtKB
. When using the Bioregistry’s extended prefix map,
these prefixes should be standardized to uniprot
with curies.Converter.pd_standardize_prefix()
.
This can be done in-place with the following:
import pandas
import curies
# the first column represents the prefix for the protein,
# called "DB" in the schema. This is where we want to upgrade
# `UniProtKB` to `uniprot`
df = pd.read_csv(
"http://geneontology.org/gene-associations/goa_human.gaf.gz",
sep="\t",
comment="!",
header=None,
)
converter = curies.get_bioregistry_converter()
converter.pd_standardize_prefix(df, column=0)
The target_column
keyword can be given if you don’t want to overwrite the original.
Bulk Standardizing CURIEs
Using the same example data from GO, the sixth column contains CURIE for references such as
GO_REF:0000043. When using the Bioregistry’s extended prefix map,
these CURIEs’ prefixes should be standardized to go.ref
with curies.Converter.pd_standardize_curie()
.
This can be done in-place with the following:
import pandas
import curies
df = pd.read_csv(
"http://geneontology.org/gene-associations/goa_human.gaf.gz",
sep="\t",
comment="!",
header=None,
)
converter = curies.get_bioregistry_converter()
converter.pd_standardize_curie(df, column=5)
The target_column
keyword can be given if you don’t want to overwrite the original.
File Operations
Apply in bulk to a CSV file with curies.Converter.file_expand()
and
curies.Converter.file_compress()
(defaults to using tab separator):
import curies
path = ...
converter = curies.get_obo_converter()
# modifies file in place
converter.file_compress(path, column=0)
# modifies file in place
converter.file_expand(path, column=0)
Like with the Pandas operations, the keyword ambiguous=True`
can be set
when entries can either be CURIEs or URIs.
Tools for Developers and Semantic Engineers
Working with strings that might be a URI or a CURIE
Sometimes, it’s not clear if a string is a CURIE or a URI. While the SafeCURIE syntax is intended to address this, it’s often overlooked.
CURIE and URI Checks
The first way to handle this ambiguity is to be able to check if the string is a CURIE
or a URI. Therefore, each curies.Converter
comes with functions for checking if a string is a CURIE (curies.Converter.is_curie()
)
or a URI (curies.Converter.is_uri()
) under its definition.
import curies
converter = curies.get_obo_converter()
>>> converter.is_curie("GO:1234567")
True
>>> converter.is_curie("http://purl.obolibrary.org/obo/GO_1234567")
False
# This is a valid CURIE, but not under this converter's definition
>>> converter.is_curie("pdb:2gc4")
False
>>> converter.is_uri("http://purl.obolibrary.org/obo/GO_1234567")
True
>>> converter.is_uri("GO:1234567")
False
# This is a valid URI, but not under this converter's definition
>>> converter.is_uri("http://proteopedia.org/wiki/index.php/2gc4")
False
Extended Expansion and Compression
The curies.Converter.expand_or_standardize()
extends the CURIE expansion function to handle the situation where
you might get passed a CURIE or a URI. If it’s a CURIE, expansions happen with the normal
rules. If it’s a URI, it tries to standardize it.
from curies import Converter, Record
converter = Converter.from_extended_prefix_map([
Record(
prefix="CHEBI",
prefix_synonyms=["chebi"],
uri_prefix="http://purl.obolibrary.org/obo/CHEBI_",
uri_prefix_synonyms=["https://identifiers.org/chebi:"],
),
])
# Expand CURIEs
>>> converter.expand_or_standardize("CHEBI:138488")
'http://purl.obolibrary.org/obo/CHEBI_138488'
>>> converter.expand_or_standardize("chebi:138488")
'http://purl.obolibrary.org/obo/CHEBI_138488'
# standardize URIs
>>> converter.expand_or_standardize("http://purl.obolibrary.org/obo/CHEBI_138488")
'http://purl.obolibrary.org/obo/CHEBI_138488'
>>> converter.expand_or_standardize("https://identifiers.org/chebi:138488")
'http://purl.obolibrary.org/obo/CHEBI_138488'
# Handle cases that aren't valid w.r.t. the converter
>>> converter.expand_or_standardize("missing:0000000")
>>> converter.expand_or_standardize("https://example.com/missing:0000000")
A similar workflow is implemented in curies.Converter.compress_or_standardize()
for compressing URIs
where a CURIE might get passed.
from curies import Converter, Record
converter = Converter.from_extended_prefix_map([
Record(
prefix="CHEBI",
prefix_synonyms=["chebi"],
uri_prefix="http://purl.obolibrary.org/obo/CHEBI_",
uri_prefix_synonyms=["https://identifiers.org/chebi:"],
),
])
# Compress URIs
>>> converter.compress_or_standardize("http://purl.obolibrary.org/obo/CHEBI_138488")
'CHEBI:138488'
>>> converter.compress_or_standardize("https://identifiers.org/chebi:138488")
'CHEBI:138488'
# standardize CURIEs
>>> converter.compress_or_standardize("CHEBI:138488")
'CHEBI:138488'
>>> converter.compress_or_standardize("chebi:138488")
'CHEBI:138488'
# Handle cases that aren't valid w.r.t. the converter
>>> converter.compress_or_standardize("missing:0000000")
>>> converter.compress_or_standardize("https://example.com/missing:0000000")
Reusable data structures for references
While URIs and CURIEs are often represented as strings, for many programmatic applications,
it is preferable to pre-parse them into a pair of prefix corresponding to a semantic space
and local unique identifier from that semantic space. curies
provides two complementary
data structures for representing these pairs:
curies.ReferenceTuple
- a native Pythontyping.NamedTuple
that is storage efficient, can be hashed, can be accessed by slicing, unpacking, or via attributes.curies.Reference
- apydantic.BaseModel
that can be used directly with other Pydantic models, FastAPI, SQLModel, and other JSON-schemata
Internally, curies.ReferenceTuple
is used, but there is a big benefit to standardizing
this data type and providing utilities to flip-flop back and forth to curies.Reference
,
which is preferable in data validation (such as when parsing OBO ontologies)
Integrating with rdflib
RDFlib is a pure Python package for manipulating RDF data. The following example shows how to bind the
extended prefix map from a curies.Converter
to a graph (rdflib.Graph
).
import curies, rdflib, rdflib.namespace
converter = curies.get_obo_converter()
graph = rdflib.Graph()
for prefix, uri_prefix in converter.bimap.items():
graph.bind(prefix, rdflib.Namespace(uri_prefix))
A more flexible approach is to instantiate a namespace manager (rdflib.namespace.NamespaceManager
)
and bind directly to that.
import curies, rdflib
converter = curies.get_obo_converter()
namespace_manager = rdflib.namespace.NamespaceManager(rdflib.Graph())
for prefix, uri_prefix in converter.bimap.items():
namespace_manager.bind(prefix, rdflib.Namespace(uri_prefix))
URI references for use in RDFLib’s graph class can be constructed from
CURIEs using a combination of curies.Converter.expand()
and rdflib.URIRef
.
import curies, rdflib
converter = curies.get_obo_converter()
uri_ref = rdflib.URIRef(converter.expand("CHEBI:138488", strict=True))